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ABSTRACT

An algorithm has been developed which detects, isolates, and accommodates
sensor failures using analytical redundancy. The performance of this
algorithm has been demonstrated on a full-scale FI100 turbofan engine. The
algorithm has been implemented in real-time on a microprocessor-based controls
computer which includes parallel processing and high order language
programming. Parallel processing was used to achieve the required
computational power for the real-time implementation. High order language
programming was used in order to reduce the programming and maintenance costs
of the algorithm implementation software. The sensor failure algorithm was
combined with an existing multivariable control algorithm to give a complete
control implementation with sensor analytical redundancy. This paper
describes the real-time microprocessor implementation of the algorithm which
resulted in the successful completion of the algorithm engine demonstration.

INTRODUCTION

The objective of the Advanced Detection, Isolation, and Accommodation
(ADIA) program is to improve the overall demonstrated reliability of digital
electronic control systems for turbine engines. Although hydromechanical
implementations of turbine engine control systems have matured into highly
reliable units, there is a trend towards increased engine complexity in order
to meet ever increasing engine performance requirements. Consequently, the

engine control has become increasingly complex. Because of this complexity




trend and the revolution in digital electronics, the control has evolved from
a hydromechanical to a full authority digital electronic control (FADEC)
implementation. These FADEC type controls must demonstrate the same or
improved levels of reliability as their hydromechanical predecessors.

In an effort to improve the overall reliability of the digital electronic
control §ystem, various redundancy management techniques have been applied to
both the total control system and to individual components. Studies have
shown that the least reliable of the control system components are the engine
sensors.! In fact some type of sensor redundancy will be required to achieve
adequate control system reliability. One important type is analytical
redundancy which uses a mathematical model to generate redundant information
that can be compared to measured information to detect failures. Analytically
redundant systems can have cost and weight savings over systems that use
hardware redundancy.

Considerable progress has been made in the application of analytical
redundancy to improve turbine engine control system reliability. Reference 2
surveys these accomplishments and defines several technology needs. These
needs include (1) the ability to detect soft failures over a wide range of
operating conditions, (2) real-time implementations of algorithms capable of
detecting soft failures, (3) a comparison of algorithm complexity versus
performance, and (4) a full scale demonstration of a soft failure detection
capability. The ADIA program addresses all of these technology needs.

The ADIA program is organized into four phases: developmen’c,3»4
implementation,5 evaluation,® and demonstration. In the development phase the
ADIA algorithm was designed using advanced filtering and detection
methodologies. In the implementation phase this advanced algorithm was
implemented in microprocessor based hardware. A paralliel computer architecture
(three processors) was used to allow the algorithm to execute in a time frame

2



consistent with stable, real-time operation. In the evaluation phase the
advanced algorithm and its implementation were evaluated against a real-time
hybrid simulation of the F100 engine. Most recently, the algorithm and its
implementation have been demonstrated with a full scale F100 engine in the
NASA Lewis Propulsion Systems Laboratory. The objective of this demonstration
phase was to engine test the performance of the ADIA algorithm on realistic
hardware over a substantial portion of the F100 engine flight operating
envelope. This paper describes the implementation of the algorithm used to
accompiish this engine demonstration. Detailed results of the engine
demonstration are given in Refs. 7 and 8.

This paper contains a description of the test bed system used in the
engine demonstration, descriptions of the F100 multivariable control algorithm
and the ADIA algorithm, and a description of the impiementation hardware and
software used for the engine demonstration. The implementation aspects of the
ADIA program are summarized, with recommendations given for future
implementation work.

DEMONSTRATION TEST BED

The engine demonstration of the ADIA algorithm was carried out on the
test bed shown in Fig. 1. The test bed consists of the F100 Engine System,
the Controls Microcomputer System containing the multivariable control and the
ADIA algorithm, the Sensor Failure Simulator, and the F100 Simplified Engine
Simulator.

The Engine System consists of the F100 turbofan engine, the actuators,
and the sensors. The F100 engine is a high performance, low bypass ratio,
twin spool turbofan engine. The engine has four controlled inputs, five
engine outputs, and four environmental variables. These variables are defined

as follows:



Controlled Engine Inputs, U.om-and Uy Sensed Engine Qutputs. Zg Sensed Envirgonmental Variables, E,

WF  Main combustor fuel flow N1 Fan speed PO Ambient (static) pressure

AJ  Exhaust nozzle area N2  Compressor speed PT2 Fan inlet (total) pressure
CIVV Compressor inlet variable vanes PT4 Burner pressure TT2 Fan inlet temperature

RCVV Rear compressor variable vanes P76 Exhaust nozzle pressure 7725 Compressor inlet temperature

FTIT Fan turbine inlet temperature

Strictly speaking, TT25 is an engine output variable. However, since TT25 is
used only as a scheduling variable in the control (like TT2), it is considered
an environmental variable and is not covered by the ADIA logic.

The Control, Interface, and Monitoring (CIM) Unit? (Fig. 2) contains the
microcomputer used to implement the algorithm in real-time. The CIM Unit was
designed and fabricated to provide an effective means of implementing control
algorithms for research in real time using realistic hardware, that is,
microcomputer hardware similar to that which would be used to build actual
engine control systems. In addition to the controls microcomputer, the CIM
Unit also contains hardware to provide a flexible interface to and from the
engine. This interface consists of cabling, a patching system, signal
conditioning, and connectors. A monitoring system in the CIM Unit allows the
signals between the microcomputer and the controlled engine to be examined.

The Sensor Failure Simulator!O (SFS) provides an efficient means of
modifying engine sensor signals to simulate sensor failures. The SFS unit
consists of a personal computer driving discrete analog hardware. The
personal computer allows a menu-driven, top-down approach to failure scenario
creation, retrieval, editing, and execution. A failure scenario consists of
the sensor channel(s) to be failed, the failure mode(s) for each channel, and
the time at which the failure occurs for each channel. The SFS allows
complete and repeatable control over the failure size and the timing of
failure injection.

The F100 Simplified Engine Simulator!! is used to validate changes made

to the controls microcomputer software. The simulator is microprocessor-based



and uses hardware and software similar to that used for the ADIA real-time
implementation. During the engine demonstration, all changes to the algorithm
software were tested with the Simplified Engine Simulator in order to validate
changes to the software without compromising the safety of the engine. The
engine simulator was also used during engine testing to simulate the engine
actuators, so that actuator failures could be detected.
F100 MULTIVARIABLE CONTROL

The multivariable control (MVC) system shown in Fig. 3 is essentially a
model following, proportional-plus-integral control. The MVC control 12 was
previously demonstrated in an altitude test of an F100 engine.13 The
components of the control are the reference point schedules and transition
control, the proportional control logic, the integral control logic, and the
engine protection logic. The reference point schedules generate a desired
engine operating point in response to the pilot's thrust command (PLA) and
sensed engine environment. The transition control generates rate limited
command trajectories for smooth transition between steady-state operating
points. The proportional and integral control logic minimize transient and
steady-state deviations from the commanded trajectories. The engine
protection logic limits the size of the commanded engine inputs. The normal
control mode in the MVC logic uses fuel flow to set engine fan speed and
nozzle area to set nozzle pressure (engine pressure ratio). However, at those
conditions where limiting is required, fuel flow can be used to limit the
maximum FTIT, the maximum PT4, or the minimum PT4.

ADIA Algorithm Description

The ADIA algorithm detects, isolates, and accommodates sensor failures in
an F100 turbofan engine control system. The algorithm incorporates advanced
filtering and detection logic and is general enough to be applied to different
engines or other types of control systems. The algorithm detects two classes
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of sensor failures, hard and soft. Hard failures are defined as out-of-range
or large bias errors that occur instantaneously in the sensed values. Soft
failures are defined as small bias errors or drift errors that increase
relatively slowly with time. The ADIA algorithm (Fig. 3) consists of four
elements: (1) hard sensor failure detection and isolation logic; (2) soft
sensor failure detection and isolation logic; (3) an accommodation filter; and
(4) the interface switch matrix.

In the normal or unfailed mode of operation, the accommodation filter
uses the full set of engine measurements to generate a set of optimal
estimates of the measurements. These estimates (E(t)) are used by the control
law. When a sensor failure occurs, the detection logic determines that a
failure has occurred. The isolation logic then determines which sensor is
faulty. This structural information is passed to the accommodation filter.
The accommodation filter then removes the faulty measurement from further
consideration. The accommodation filter, however, continues to generate the
fuil set of optimal estimates for the control. Thus the control mode does not
have to restructure for any sensor failure. The ADIA algorithm inputs as
shown in Fig. 3 are the sensed engine output variables, Zp(t), the sensed
engine environmental variables, Enp(t), and the sensed engine input variables,
Unp(t). The outputs of the algorithm, the estimates, E(t), of the measured
engine outputs, Zp(t), are used as input to the proportional part of the
control. During normal mode operation, engine measurements are used in the
integral control to ensure accurate steady-state operation. MWhen a sensor
failure is accommodated, the measurement in the integral control is repliaced
with the corresponding accommodation filter estimate by reconfiguring the

interface switch matrix.



Accommodation filter. - The accommodation filter incorporates an engine

model along with a Kalman gain update to generate estimates of the engine

states ; and the engine outputs 2 as follows.

dx °
&< F(X- X)) + G - U + Ke M
= HOX = Xp) + DU = Up) + Zp 2)
e =17 -1 (3)

m
Here the subscript b represents the base point (steady-state engine
operating point) and X s the 4 by 1 model state vector, Uy 1is the 4 by

1 sensed control vector, and Zy 1is the 5 by 1 sensed output vector. The
matrix K is the Kalman gain matrix and e 1is the residual vector. The F,
G, H, and D matrices are the appropriately dimensioned system matrices.
Their individual matrix elements along with those of K are corrected by the
engine inlet conditions Ep and scheduled as nonlinear functions of Zy.% An
improvement that was added to the accommodation filter was the incorporation
of integral action to improve steady-state accuracy of the FTIT estimate 25.
One important engine control mode is the limiting of FTIT at high power
operation. Because the FTIT sensor is relatively slow, control action is
based upon the dynamically faster FTIT estimate. Because the FTIT limiting
control has integral action, a high degree of steady-state accuracy in the
FTIT estimate is reduired to ensure satisfactory control. This accuracy is
accomplished by augmenting the filter with the following additional state and

output equations

db _
qt = Kﬁe 4
FTIT = 24 + b (5)

where Kg 1is a gain matrix, b 1is the temperature bias, and 25 is the

unbiased temperature estimate. The addition of these dynamics, while improving



FTIT estimation accuracy, results in a larger minimum detectable FTIT drift
failure rate. This filter structure, which includes the FTIT bias state, is
the structure used in the accommodation filter and all the hypothesis filters
used in the soft detection and isolation logic.

Reconfiguration of the accommodation filter after the detection and
jsolation of a sensor failure is accomplished by forcing the appropriate
residual element to zero. For example, if a compressor speed sensor failure
(N2) has been isolated, the effect of reconfiguration is to force ey = 0.
This is equivalent to setting sensed N2 equal to the estimate of N2
generated by the filter. The residuals generated by the accommodation filter
are used in the hard failure detection logic.

Hard failure detection and isolation logic. - The hard sensor failure

detection and isolation logic is straightforward. To accomplish hard failure
detection and isolation the absolute value of each component of the residual
vector is compared to its own threshold. If the residual absolute value is
greater than the threshold, then a failure is detected and isolated for the
sensor corresponding to the residual element. Threshold sizes are initially
determined from the standard deviation of the noise on the sensors. These
standard deviation magnitudes are then increased to account for modeling
errors in the accommodation filter. The hard detection threshold values are
twice the magnitude of these adjusted standard deviations. These magnitudes
are summarized in Table 1.

Soft failure detection and isolation logic. - The soft failure detection

logic (Fig. 4) consists of multiple-hypothesis-based testing. Each hypothesis
is impiemented using a Kalman filter. A total of six hypothesis filters are
shown, one for normal mode operation (Hg) and five for the failure modes (one
for each engine output sensor, Hy to Hg). The structure for each hypothesis
filter is identical to the accommodation filter. However, each hypothesis
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filter uses a different set of measurements. For example the first hypothesis
filter (Hy) uses all of the sensed engine outputs except the first, N1. The
second uses all of the sensed outputs except the second, N2, and so on. Thus,
each hypothesis filter generates a unique residual vector, ej. From this
residual each hypothesis filter generates a statistic or likelihood based upon
a weighted sum of squared residuals (WSSR). Assuming Gaussian sensor noise,
each sample of ;3 has a certain likelihood or probability

—NSSRi

Li = pi(ei) = ke (6

where Kk is a constant and WSSRj = eiTZ“ei where T is matrix transposition

and L = diag(o%).

The o5 are the adjusted standard deviations defined in Table 1. These
standard deviation values scale the residuals to dimensionless quantities that
can be summed to form a WSSR. The WSSR statistic is smoothed to remove gross
noise effects by a first order lag with a time constant of 0.1 sec. The log
of the ratio of each hypothesis likelihood to the normal mode Tikelihood is
calculated. Mathematically, when the log of the ratio of likelihoods is

taken, then

L.
1
LRi = 1Og(LO) = NSSRO - NSSRi N

If the maximum log likelihood ratio exceeds the soft failure detection and
isolation threshold, then a failure is detected and isolated and accommodation
occurs. If a sensor failure has occurred in N1 for example, all of the
hypothesis filters except H; will be corrupted by the faulty information.
Thus each of the corresponding likelihoods will be small except for LRj.
Thus, LR7 will be the maximum and it will be compared to the threshold to

detect the failure.



Adaptive threshold. - Initially, the soft failure detection/isolation

threshold was determined by standard statistical analysis of the residuals to
set the confidence level of false alarms and missed detections. The threshold
was then modified to account for modeling error. It was soon apparent from
initial evaluation studies that transient modeling error was dominant in
determining the fixed threshold level. It was also clear that this threshold
was too large for desirable steady-state operation. Thus, an adaptive
threshold was incorporated to make the algorithm more robust to transient
modeling error while maintaining steady-state performance.

The adaptive threshold defined as

Iy = l~1ss<rExr> + ‘) (8
dr
v SDEKP 4 Doy = M (9)

was heuristically determined and consists of two parts. One part, Tjgs, is
the steady-state detection/isolation threshold which accounts for steady-
state, or low frequency modeling error. The second part, Tgxp, accounts for
the transient, or high frequency modeling error. The adaptive threshold is
triggered by an internal control system variable, Mtr3n, which is indicative
of transient operation. The values of Tjgg, t, and Mtpran were found by
experimentation to minimize false alarms during transients. When the engine
experiences a transient, Mtpan is set to 4.5, otherwise it is 0. The
threshold time constant 1 = 2 sec. The adaptive threshold expansion logic

enabled Tjg5 to be reduced to 40 percent of its original value which results
in an 80 percent reduction in the detection/isolation threshold r%. The

adaptive threshold logic is illustrated in Fig. 5 for a PLA pulse transient.

Failure accommodation. - For accommodation two separate steps are taken.

First, all seven of the filters (the accommodation filter and the six

hypothesis filters) are reconfigured (the appropriate residual in each filter
10



is forced to zero) to account for the detected failure mode. Second, if a
soft failure was detected, the states and estimates of all seven filters are
updated to the values of the hypothesis filter which corresponds to the failed
sensor.
MICROCOMPUTER IMPLEMENTATION

The objective of the real-time implementation of the algorithm was to
allow a demonstration of the algorithm with a full scale engine using hardware
and software typical of that to be used in next generation turbofan engine
controls. The MVC-ADIA implementation has several distinct hardware and
software features. Three CPU's are used, operating in parallel. The software
which implements the ADIA algorithm uses floating-point arithmetic. In
addition, the ADIA software is coded almost entirely in the application
language, FORTRAN. The FORTRAN subroutines have been optimized to execute in
real time. Only the schedules used to generate the engine model basepoints
and table look-up routines within the ADIA algorithm are coded in assembly
language.

Controls Microcomputer Hardware/Software Design

Implementing the MVC-ADIA algorithm required integrating the ADIA
algorithm with the existing microcomputer implementation of the F100
multivariable control (MVC). The update interval of the microprocessor-based
MVC implementation was 22 msec. The F100 engine system dynamics required that
the combined MVC-ADIA algorithm update interval be 40 msec or less. The
resulting control microcomputer, based on the Intel 80186 microprocessor
architecture, used multiple processors operating in parallel to satisfy the
update interval requirement.

The software for the combined MVC-ADIA algorithm was partitioned so that
the ADIA software ran on a second CPU while the MVC algorithm ran on the
first. Because the soft-failure isolation logic required a significant amount
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of processing time, a third CPU was added to implement the soft isolation
logic in paraltel. Data were transferred between CPU's through dual-ported
memory, and synchronization between CPU's was achieved through interrupts.
The features of the Monolithic Systems MSC 8186 single-board computers used
are shown in Table 2.

Each of these CPU's provides approximately 0.7 million instructions per
second (MIPS), such that the three processors combined provide on the order of
2 MIPS. These three CPU's are contained in an 18 slot Multibus chassis. The
resulting hardware configuration is shown in Fig. 6. In addition to the CPU's,
the chassis also contains a floppy disk controller, a graphics interface, and
both analog and digital input/output boards.

The relative timing for the three CPU's is shown in Fig. 7. The arrows
in the figure represent interrupts. The first event to occur is an update
interval timer interrupt to CPU 1. CPU 1 then samples all the algorithm
inputs. The measurements required for the algorithm on CPU's 2 and 3 are then
converted by CPU 1 to floating point numbers and transferred to CPU 2 with an
interrupt to indicate that the algorithm inputs are now available. CPU 1 then
computes the parts of the MVC algorithm that are not dependent on the outputs
of the ADIA algorithm, that is, the reference point schedules and transition
control. Concurrently, CPU 2 uses the algorithm inputs to compute the engine
model matrices and basepoints, and the Kalman gain matrix. This information
is then passed to CPU 3, with an interrupt to indicate the information is
available, for use in the soft failure isolation logic. The soft failure
isolation logic computes through the remainder of the current update interval
and into the next. Any soft isolation information that results is then
transferred from CPU 3 to CPU 2. CPU 2 performs the hard failure detection
and accommodation filter computations using the isolation information if
needed. An interrupt is then sent from CPU 2 to CPU 1 indicating the ADIA
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calculations are completed. CPU 1 reads the resulting ADIA outputs, finishes
the MVC calculations, and sends the controlled variables to the engine
actuators. Lastly, CPU 2 calculates altitude and Mach number from the engine
environmental variables for use during the next update interval.

The Microcontroller Interactive Data System (MINDS),!4 used for data
acquisition, runs in the spare time on CPU 1 (Fig. 7). The MINDS package has
both steady-state and transient data-taking capabilities and can access any
variable in the MVC or ADIA algorithm for display or plotting.

Implementation Languages

The MVC is implemented in fixed-point assembly language on CPU 1. When
the MVC was originally implemented on a microcomputer 3 years prior to the
ADIA implementation, assembly language programming using fixed-point
arithmetic was necessary to achieve real-time execution of the algorithm.

With the development of efficient floating-point coprocessing hardware, in
this case the Intel 8087, came the capability of implementing real-time
controls in floating-point arithmetic. Thus most of the ADIA algorithm
running on CPU's 2 and 3 is programmed in floating-point arithmetic and the
application-oriented language FORTRAN. FORTRAN was chosen because the ADIA as
developed was coded in FORTRAN.

The advantages of using floating-point arithmetic and an application
language such as FORTRAN rather than programming in fixed-point assembly
language as was used for the MVC include increased software reliability and
reduced software development and maintenance costs. The primary disadvantage
to using an application lanqguage is that it generally produces less efficient
object code than the equivalent functions programmed in assembly language.
Entirely in FORTRAN and as originally coded, the ADIA algorithm took over an
order of magnitude longer than the required 40 msec update interval. To speed
execution, table lookup routines,!d which are written to take advantage of the
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8087 architecture and are executed frequently in the ADIA algorithm, are
implemented in assembly language. The hardware interface routines, which have
no FORTRAN equivalent, are also implemented in assembly language. The
schedules used to compute the accommodation filter basepoints are identical
functionally to the reference point schedules in the MVC, so the MVC assembly
language schedules were used to save additional compute time. To allow the
remainder of the algorithm to remain in FORTRAN, the source code has been
optimized to make it run more efficiently.‘5 As shown in Fig. 7, the entire
MVC-ADIA algorithm now executes in less than the required 40 msec.
Memory Requirements

The memory required for each of the three CPU's is shown in Fig. 8. Each
CPU has, in addition to its share of the MVC-ADIA algorithm, an executive
routine that maintains correct real-time operation of the total algorithm. The
memory required for the algorithm and for the executive are shown for each CPU.
The memory required for MINDS is shown for CPU 1. It was necessary to ensure
that while the engine was operating under research control (MVC-ADIA), any
event which compromised the safety of the engine be detected and an appropriate
action taken. Failure modes within the controls microcomputer were identified
and safety procedures defined which avoided compromising the safety of the
engine. The memory required for the safety software, which runs only on CPU 1
is shown. 1In all cases the code and the constants were about 75 percent, and
the data and the variables about 25 percent, of the total memory required.
Figure 8 shows the total memory required for all executives (16.9 kbytes), the
total algorithm (54 kbytes), MINDS (34.4 kbytes), and the safety software
(2.5 kbytes) for all three CPU's combined. It is likely that a state-of-art
32-bit microprocessor is capable of real-time execution of the MVC and ADIA
algorithms on a single CPU. Thus, Fig. 8 shows what the total memory required
for the MVC-ADIA implementation would be if it could indeed be combined onto a
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single CPU. This would eliminate some redundant code in the executives and in
the algorithm which was replicated due to being distributed across multiple
CPU's. As shown, about 5 kbytes of executive and 15 kbytes of algorithm are
replicated in the multiple CPU implementation. Thus a single CPU
implementation would take about 20 kbytes less memory.
RESULTS AND DISCUSSION

The real-time microcomputer implementation of the combined MVC-ADIA
algorithm performed extremely well. Sensor failure detection and accommodation
were demonstrated at eleven different operating points which included subsonic
and supersonic conditions and medium and high power operation of the engine.
The minimum detectable failure magnitudes represent excellent algorithm
performance and compare favorably to values predicted by simulation.
Accommodation performance was excellent. Transient engine operation over the
full power range with single sensors failed and accommodated was successfully
demonstrated. Open loop engine operation (all feedback sensors failed and
accommodated) over at least 75 percent of the power range was also demonstrated
at two different operating conditions.8

There were several features of the implementation which are of particular
interest and which demonstrate the feasibility of implementing the ADIA
algorithm in a production engine control. The implementation uses almost
entirely High Order Language (HOL) programming. All previous research control
applications and most current engine controls use assembly language
programming in order to attain real-time operation. Using an HOL greatly
reduces software costs both in the programming and maintenance of the software
due to increased software reliability. The experience gained during the ADIA
evaluation and demonstration supports this conclusion. The ADIA algorithm was
evaluated with a real-time simulation of the F100 engine over a period of
2 years. During that time there were a number of software changes made due to

15



the evolution of the software from the initial evaluation version to the final
demonstration version. Even with this extensive software experisnce base
there were several latent faults in the software that emerged during the PSL
demonstration. All of the faults were in the assembly language programs in
the MVC running on CPU 1. This reinforces the commonly held belief that
assembly language programming, although deemed necessary in some real-time
applications, is a major contributor to software unreliability when compared
to HOL's. Furthermore, these errors all had to do with scaled integer
arithmetic. Using a HOL, then, should be accompanied by the use of floating
point arithmetic. This is accommodated in hardware with most state-of-the-art
microprocessors.

Several comments are also in order about the parallel processing
implementation used for the ADIA. When the decision was made to use parallel
processing, several factors were considered. First, it was important to use
off-the-shelf microprocessors to realistically emulate next generation engine
control computers. Second, it was desired to maintain the original structure
of the ADIA algorithm so as to minimize the number of changes to the ADIA
algorithm software. As mentioned earlier in this report, the ADIA algorithm
required considerable code optimization in order to be implemented in
real-time. However, the structure of the algorithm remained identical to the
original version as delivered to NASA Lewis Research Center at the end of
algorithm development. Alternatives to using parallel processors were
considered. These included only updating the model matrices every several
update intervals and freezing control outputs while isolating and accommodating
failures. However, the use of the parallel processors allowed the algorithm
to be used as originally formulated and allowed the algorithm to be fully
updated each control update interval. Finally, the way the algorithm was
partitioned onto multiple processors accentuated the simple interface between
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the MVC control algorithm and the ADIA sensor failure logic. This in turn
points out the generic nature of the ADIA algorithm.
CONCLUDING REMARKS

The use of parallel processors and high order language programming has
not only demonstrated the use of these technologies for sophisticated control
applications, but has also allowed the research implementation of a control
algorithm and sensor failure algorithm in a cost effective manner.

Research results of the evaluation and demonstration of the Advanced
Detection, Isolation, and Accommodation (ADIA) algorithm with a real-time
hybrid simulation and with an actual F100 engine are given in Refs. 6 to 8.
These results include steady state and transient data for the F100

Multivariable Control combined with the ADIA algorithm for the no failure case

and for a variety of failure scenarios. These results show that the reai-time
implementation performed very well, and that the performance of the algorithm
with the actual F100 engine was almost identical to that predicted by the
real-time simulation evaluation. The combination of the fact that the ADIA
performed as predicted and in a time frame, memory size, and with hardware and
software that realistically emulates future engine control systems leads to
the conclusion that the ADIA algorithm not only works well, but is practical
and feasible for engine control systems.

As turbofan engine control system complexity continues to increase to
provide improved performance of engine systems, the software cost, already a
major part of the control system costs, will dominate total system cost. It
is therefore important to note that sophisticated hardware, and more
importantly improved software engineering techniques, will be required. The
assembly language executive used for the ADIA program should be replaced by a
high lTevel language real-time executive. This executive may make use of
real-time operating systems and/or real-time constructs found in high level
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languages such as Ada. In addition, the speed of computers has been
increasing at a rapid pace and is expected to continue to do so. There are
now 32-bit microprocessors that could perform the entire ADIA algorithm on a
single CPU rather than on three CPU's. This single CPU implementation would
decrease the hardware cost of the ADIA implementation even further. Combining
advanced microprocessors with structured software design and implementation
techniques will enable the use of analytical redundancy in future, complex
aerospace control systems.
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TABLE 1. - HARD DETECTION
THRESHOLD MAGNITUDES

Sensor | Adjusted standard | Detection
deviation threshold
N1 300 rpm 600 rpm
N2 400 rpm 800 rpm
PT4 30 psi 60 psi
PT6 5 psi 10 psi
FTIT 250 °R 500 °R

TABLE 2. - MSC 8186 FEATURES

8 MHz 80186 microprocessor
Eight general purpose 16-bit registers
Four 16-bit segment registers
Two 16-bit status and control registers
Integrated peripherals including three timers, two DMA
controllers and a programmable interrupt controller
Signed, fixed-point arithmetic (add 1.25 usec,
multiply 4.5 usec, divide 7.6 usec)
8 MHz 8087 numerics coprocessor
Eight deep 80-bit register stack
Compatible with IEEE floating point standard 754
Signed, floating point arithmetic (add 15.6 psec,
multiply 21 usec, divide 28.7 usec)
128 kbytes of dual-ported, 150 nsec zero-wait-state dynamic RAM
256 kbytes of EPROM
Five total programmable timer/counters
13 Levels of vectored interrupt control
RS-232 compatible serial interface
IEEE 796/Multibus compatible bus interface
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